

AS6501-QF_DK

Development Kit User Guide

AS6501-QF_DK User Guide

Revision: 1 Release Date: 2023-05-24 Document Status: Production

Content Guide

Сс	ontent Guide	
1	Introduction	
	1.1 Ordering Codes	3
2	Ouick Start Guide	
	2.1 Install the Software	
	2.2 Install the Hardware	
	2.3 Start Software	
3	Hardware Description	
4	Software Description	
	4.1 Main Window	5
	4.1.1 Stop Page	5
	4.1.2 REFCLK/SPI Page	6
	4.1.3 SPI/LVDS Page	6
	4.2 Menu & Support Windows	7
	4.2.1 File	7
	4.2.2 Tools	8
5	Schematics, Layers & BOM	
6	RoHS Compliance & ScioSense Green Statement	
7	Copyrights & Disclaimer	
8	Revision information	

1 Introduction

The AS6501-DK development kit allows customers a quick and intuitive approach to using the AS6501 2-channel time-to-digital converter.

The kit includes of four elements:

AS6501-QF_DK_RB reference board V1.0, based on AS6501-FLQM in QFP48 package

PicoProg Lite interface

USB-C data cable

Figure 1: Functional Blocks

Please download the latest software for the kit from https://www.downloads.sciosense.com/AS6501

1.1 Ordering Codes

Table 1: Pin description

Ordering code	Part Number	Description
AS6501-QF_DK	221060003	AS6501 Development kit including PicoProg Lite and cable
AS6501-QF_DK_RB	221060002	AS6501 reference board

2 Quick Start Guide

This section describes how to set up the AS6501 development kit, establish basic operation and make measurements quickly.

2.1 Install the Software

Please download the latest software for the kit from: Link: https://downloads.sciosense.com/as6501

- Unzip the package to the desired directory.
- Open "setup.exe" from the unzipped directory.
- Follow the instructions on the screen.

2.2 Install the Hardware

- Connect the PicoProg Lite PCB to the computer by means of the USB cable. The green LED should be on.
- Connect the AS6501 reference board to the PicoProg Lite. Select the connector for SPI communication and one for I2C communication. They are marked accordingly.

2.3 Start Software

- Execute the AS6501 front panel Software. The communication status should be green
- The software starts with an initial configuration, that can be opened the default configuration file config_default.cfg.
- Press "Power On Reset" "Write Config" "Init Reset"
- Press "Start Measurement"

The measurement should run and results should be displayed now.

3 Hardware Description

The AS6501-QF_DK_RB board, shown in Figure 2, is a basic board for the 2-channel time-to-digital converter AS6501. The reference clock can be applied from external via pin or from the on-board 5 MHz quartz oscillator (X1).

Figure 2: Reference board

The board is connected to the PC via the PicoProg Lite, a USB-to-SPI converter. The PicoProg Lite is registered by the operating system under "Other devices" as "PicoProg LITE V1.0". It comes with the appropriate firmware for each board on chip by default.

The flat connector connecting the PicoProg Lite and the AS6501-QF_DK_RB includes the power lines and the SPI communication lines. VCC_LEVEL is the voltage feedback but not used with PicoProg Lite.

4 Software Description

This section describes how to quickly set up the AS6501-DK, establish basic operation and make measurements.

4.1 Main Window

The main windows show two pages, one for configuration and one for results display.

4.1.1 Stop Page

On this window major settings are made:

- 1. Select the input pins that are used in the application.
- 2. Enable the internal measurement channels. Each pin refers to minimum one internal channel. Two will be needed in case of channel combination.
- 3. Select the resolution. High resolution achieves a betters single-shot rms noise, but at the cost of pulse-pair resolution.
- 4. Select an optional channel combination. This may be for better pulse-pair resolution or for pulse width measurement. Both options demand internally two channels per stop pin.
- 5. Having done the settings, download the configuration and initialize the chip.
- 6. Start the measurement.
- 7. At the bottom the results for the four stop channels are displayed. They show the time versus the reference clock.
- 8. In many cases the differences between the channels are of interest. This can be activated here.

Sciosense AS6501 Evaluation Software						-	
e Tools Help							
REFCLK / SPI STOP SPI / LVDS							
	2	HIT_ENA_S	TOP_A	f^		ScioSe	nse
ØPIN_ENA_STOP_B	B	⊡HIT_ENA_S	TOP_B	∱ື			
HIGH_RESOLUTION	4	CHANNEL_CO Normal Oper	OMBINE ration	0		5 Init Rese Write Con	et fig
						Power On F	
☐BLOCKWISE_FIFO_READ ☑COMMON_FIFO_READ		PIN_ENA_D	ISABLE				Reset on Statu
☐BLOCKWISE_FIFO_READ ☐COMMON_FIFO_READ	Results	PIN_ENA_C	Offset		Final Result	Communication	AS650
☐ BLOCKWISE_FIFO_READ	Results	PIN_ENA_E	Offset		Final Result	Communication PP-Lite Mean \$100	Aseset
☐ BLOCKWISE_FIFO_READ COMMON_FIFO_READ	Results 000000 000000	PIN_ENA_C Filter none	Offset	A	Final Result 146116 ps 197786 ps	Communication	Reset on Stati AS650 Std D 6281.0 6893.5

Figure 3: Stop page

4.1.2 REFCLK/SPI Page

- 1. The pin for the reset of the index needs to be enabled if in use. Otherwise, it can be off for power savings.
- Parameter REFCLK_DIVISIONS has to be set so that the frequency calculated is the same of the reference clock used (5 MHz for the on-board reference). Then the output data will come with 1 LSB = 1 ps.

Sciosense AS6501 Evaluation Software						- [×				
ïle Tools Help											
REFCLK / SPI / STOP SPI / LVDS											
✓ PIN_ENA_REFCLK	ScioSe Stop Measu	rement									
						Init Res	et .				
						Power On Reset					
						Communicatio	Communication Status				
							+ (
						PP-Lite	A\$6501				
	Results	Filter	Offset		Final Result	Mean 🗍 100	Std Dev				
STOP_A	000000	none 🗸	0 ps	Α	109654 ps	105056 ps	7481.0 ps				
STOP_B	000000	none 🗸	0 ps	Α	80516 ps	107072 ps	9243.9 ps				
DELTA STOP B - STOP A - STOP A	000000	none 🗸	0 ps	Δ	1433991022 ps	1562799196 ps	1593.0 ps				

Figure 4: REFCLK page

4.1.3 SPI/LVDS Page

On this page the communication as well as the output data format is defined. With the AS6501 reference board it is possible only to communicate via SPI.

- 1. Setting the communication interface to SPI is mandatory for the kit.
- 2. For the inputs the user has the choice between CMOS and LVDS input buffers (see Figure 6).
- 3. The detailed settings for LVDS outputs are not relevant for the kit as only SPI is available.

Note: The read-out speed of the evaluation software is much less than the TDC sample rate. Therefore, in most cases BLOCKWISE_FIFO_READ will give more reasonable display. In addition, often the difference between channels is of interest only and DELTA should be used for display. To have this calculated correctly, Math should be enabled. COMMOM_FIFO_READ helps if the same number of data from several channels is expected.

· Tools Help							
REFCLK / SPI STOP SPI / LVDS		CMOS_INF Select LVE	PUT DS 🔽 0			ScioSe J Stop Measu	rement
LVDS_DOUBLE_DATA_RATE		□PIN_EN	A_LVDS_OUT			Init Res	set
STOP_DATA_BITWIDTH	8	LVDS_TEST	PATTERN			Write Co Power On	nfig Reset
REF_INDEX_BITWIDTH		LVDS_DAT 0 ps	A_VALID_ADJU	JST		PP-Lite	+ -
	Results	Filter	Offset		Final Result	Mean 🗍 100	Std E
STOP_A	000000	none 🗸	0 ps	A	76601 ps	99005 ps	9010.2
TOP_B	000000	none 🗸	0 ps	Α	156059 ps	98278 ps	9332.9
DELTA STOP B - STOP A - MATH	000000	none 🗸	0 ps	A	1433899618 ps	1562792453 ps	1974.7

Figure 5: SPI/LVDS page

Figure 6: Typical LVDS signal

4.2 Menu & Support Windows

Beside main window, the software menu allows the opening of other windows. There are some menu items which are redundant to available buttons of main window.

4.2.1 File

Load Config

This dialog box allows the path selection of a configuration file, covering the register settings, necessary for a proper configuration of the AS6501. After opening this file, the control settings are updated in the GUI.

Save Config

This menu item allows the saving of the current GUI control settings into a configuration file.

• Save Graph Data

Allows to store the measurement data as they are stored in the data buffer for the graphical display. It is possible to store the STOP data only or the STOP together with the reference numbers.

File Tools	Help							
Load Config Save Config	g Ctrl+O g Ctrl+S							
Save Graph	Data 🔹 🕨	only STOPs Ctrl+Shift+S						
Close	Ctrl+W	STOPs + REFNOs						
			REFCLK_DIVISION					
DIM EP	VA RECOV	REPOOL	200000					

Figure 7: Menu

Close

Close all open windows of the AS6501-QF_DK Evaluation software.

4.2.2 Tools

- Run Measurement
 Same function as "Start/Stop Measurement" button in "Measurement" tab of main window.
- Graph

Opens the window for a graphical display of the measurement data.

Figure 8: Menu

• Registers

Opens a separate window for the display and setting of the configuration registers and the display of the read registers.

onfiguration Regis	ters		Resu	ilts																		
Frontpanel Sof	twa	re -							_	- 4	\S6 5	i00										
Register addr.		Reg	giste	rs (h	ex)							R	egist	er a	ddr.			Reg	ister	s (h	ex)	
[03] [02] [01] [00	1:	×	40	DFØ3	803	Ĩ.						[0	3] [0)2] [01] [00]	:	x	000	800	88	
[07] [06] [05] [04	1:	×	D3	003	80D	1						[0	7] [0)6] [05]	04]	:	×	000	300	86	
[11] [10] [09] [08	1:	×	ØA	0013	BA1	1						[1	1] [1	0] [09] [08]	:	×	000	300	86	
[15] [14] [13] [12	1:	×	7D	F1C0	cc]						[1	5] [1	4] [13]	12]	:	×	000	300	90	
[19] [18] [17] [16	1:	×	00	9996	004]						[1	9] [1	8] [17]	16]	:	x	000	800	90	
		W	rite	Reg	tr.													Re	ad R	legs	tr.	
Register addr.	00	01	02	03	04	05	06	07	0 8	0 9	10	11	12	13	14	15	16	17	18	19		
Registers (hex)	03	03	DF	40	ØD	03	C 0	D3	A1	13	00	ØA	сс	сс	F1	7D	04	00	00	00	Π.	

Figure 9: Configuration registers

Configuration Regis	sters Results				
 Reference Inde 	exes / Stops				
	Ref. Indexes (dec.)		Stop	s (dec.)	
Channel 1 :	d 11009913	Channel 1:	d	9383	
Channel 2 :	d 11009914	Channel 2 :	d	129819	
Channel 3 :	d 0	Channel 3 :	d	0	
Channel 4 :	d 0	Channel 4 :	d	0	

Figure 10: Result registers

5 Schematics, Layers & BOM

Figure 11: AS6501-QF_DK_RB schematics, Version 1.0

Тор

Inner Layer 3

Figure 12: AS6501-QF_DK_RB layout, version 1.2

Figure 13: AS6501-QF_DK_RB assembly

Inner Layer 2

Bottom

Table 2: Bill of materials for AS6501-QF_DK_RB

Quantity	Designator	Value	Comment	Footprint
1	U2		AS6500	LQFP48
1	U6	3.0 V	ADP163AUJZ Analog Devices	
3	C8, C10, C12	100 nF	Chip capacitor	0805
2	C1	10 µF / 10 V	Chip capacitor	0805
5	C2,C4,C7,C9,C11	22 µF / 6.3 V	Chip capacitor	0805
2	R19,R110	0 Ω	Chip resistor	0805
2	R18,R20	10 Ω	Chip resistor	0805
6	R10,R22-25,R51	100 Ω	Chip resistor	0805
1	R12	60.4 kΩ	Chip resistor	0805
8	R1-2,R29-34	100 kΩ	Chip resistor	0805
1	R5	604 kΩ	Chip resistor	0805
1	R4	910 kΩ	Chip resistor	0805
3	R61,R64-65	1 MΩ	Chip resistor	0805
1	R11	1.1 MΩ	Chip resistor	0805
1	J6	7 x 1 x 90°	Connector	2.54
1	J1	2 x 1 x 90°	Connector	2.54
9	J3-5,J7-11,J21	2 x 1 x 180°	Connector	2.54

6 RoHS Compliance & ScioSense Green Statement

RoHS: The term RoHS compliant means that Sciosense B.V. products fully comply with current RoHS directives. Our semiconductor products do not contain any chemicals for all 6 substance categories, including the requirement that lead does not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, RoHS compliant products are suitable for use in specified lead-free processes.

ScioSense Green (RoHS compliant and no Sb/Br): ScioSense Green defines that in addition to RoHS compliance, our products are free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material).

Important Information: The information provided in this statement represents Sciosense B.V. knowledge and belief as of the date that it is provided. Sciosense B.V. bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. Sciosense B.V. has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. Sciosense B.V. and Sciosense B.V. suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

7 Copyrights & Disclaimer

Copyright Sciosense B.V High Tech Campus 10, 5656 AE Eindhoven, The Netherlands. Trademarks Registered. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.

Devices sold by Sciosense B.V. are covered by the warranty and patent indemnification provisions appearing in its General Terms of Trade. Sciosense B.V. makes no warranty, express, statutory, implied, or by description regarding the information set forth herein. Sciosense B.V. reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with Sciosense B.V. for current information. This product is intended for use in commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by Sciosense B.V. for each application. This product is provided by Sciosense B.V. "AS IS" and any express or implied warranties, including, but not limited to the implied warranties of merchantability and fitness for a particular purpose are disclaimed.

Sciosense B.V. shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of Sciosense B.V. rendering of technical or other services.

8 Revision information

Table 3: Revision history

Revision	Date	Comment	Page
1	May 2023	First release	All

Note(s) and/or Footnote(s):

- 1. Page and figure numbers for the previous version may differ from page and figure numbers in the current revision.
- 2. Correction of typographical errors is not explicitly mentioned.

Address: Sciosense B.V. High Tech Campus 10 5656 AE Eindhoven The Netherlands

Contact: www.sciosense.com info@sciosense.com

